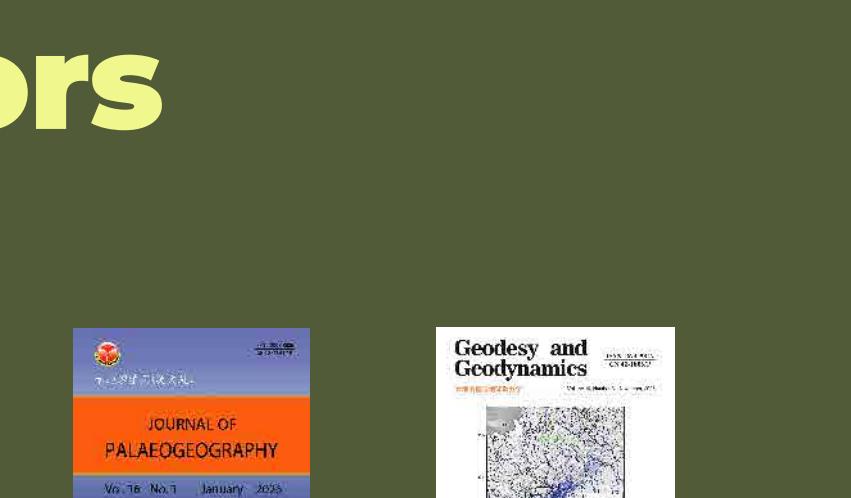


7th INTERNATIONAL CONFERENCE OF PALAEOGEOGRAPHY

October 16-19, 2026 - Mendoza, Argentina

Palaeogeography in the digital & AI age


Introduction

The International Conference of Palaeogeography (ICP) is a biennial event that promotes international academic exchange and interdisciplinary collaboration in palaeogeography and related disciplines. It is also strategically important for predicting and exploring energy and mineral resources worldwide. Since its inception in 2013, the ICP has been held six times in China, including Beijing (2013), Beijing (2015), Chengdu (2017), Beijing (2019), Wuhan (2022) and Nanjing (2024). The seventh ICP (2026) will be held outside China for the first time, and will provide an excellent opportunity to share and discuss the latest achievements in geoscience in a friendly and collaborative environment. It will be held in Mendoza, Argentina, during October 2026; located at the foot of the Andes, this city is world famous for its fantastic geology, cuisine and vineyards.

Organizers

International Society of Palaeogeography (ISP)
China University of Petroleum (Beijing)
Shandong University of Science and Technology (SDUST)
International Lithosphere Program (ILP)
Universidad Nacional de Cuyo (UNCUYO)
Universidad Nacional del Sur (UNS)

Sponsors

Editorial Committee of the *Journal of Palaeogeography*
Editorial Committee of *Geodesy and Geodynamics*
Lithofacies Palaeogeography Committee of the Chinese Society for Mineralogy, Petrology and Geochemistry
Departamento de Geología UNS
Instituto Geológico del Sur (INGEOSUR)
Asociación Geológica Argentina (AGA)
Asociación Paleontológica Argentina (APA)
Sociedade Brasileira de Geologia
Sociedad Uruguaya de Geología

We warmly welcome additional organizations to join as co-sponsors! Interested parties may reach out to the Preparatory Committee of the 7th ICP

Committees

SCIENTIFIC

Chairman: Santanu BANERJEE

Vice chairmans:

Janok P. BHATTACHARYA, Luis BUATOIS, Gabriela MANGANO, Thierry MULDER, Paul MYROW, Suping PENG, Hairuo QING, Victor RAMOS, Juergen SCHIEBER, Ian D. SOMERVILLE, Longe SUN, Maoyan ZHU

Secretary General: Yuan WANG

Members: Ihsan S. AL-AASM, Matthias ALBERTI, John S. ARMSTRONG-ALTRIN, Ricardo ASTINI, Markus ARETZ, Guoping BAI, Emese M. BORDY, Robert V. BURNE, Noelia CARMONA, Jitao CHEN, Simonetta CIRILLI, Sudipta DASGUPTA, Andres FOLGUERA, Franz T. FÜRSICH, Youbin HE, Yuangeng HUANG, Bin HU, Zai-xing JIANG, Zhenkui JIN, Barbara KREMER, Stephen KERSHAW, Piotr KRZYWIEC, Hongwei KUANG, Chunming LIN, Marcelo MARTINEZ, Stefania Nunzio LISCO, Hao LIU, Spencer G. LUCAS, Massimo MORETTI, Renata NETTO, Daniela OLIVERA, German OTHARAN, Emilia PERA, Tadeusz Marek PERYT, Fotini POMONI, Juan Jose PONCE, Mihai Emilian POPA, Jahnavi PUNEKAR, Hairuo QING, Miftah QUATTROCCHIO, Ahmed RADWAN, Ganapathy SHANMUGAM, Subir SARKAR, Longyi SHAO, Zhiqiang SHI, Dechen SU, Ron STEEL, Anna Chiara TANGARI, Yuan WANG, Yasheng WU, Yinhe WU, Benzhong XIAN, Lida XING, Jianghai YANG, Renchao YANG, Tian YANG, Wan YANG, Xiaojiang YANG, Carlos ZAVALA, Shuichang ZHANG, Tingshan ZHANG, Xiaomin ZHU

Chairmans: Carlos ZAVALA, Shenghe WU

Vice chairmans: Zhidong BAO, Gabriela CASTILLO ELIAS, Zhongqiang CHEN, Franz T. FÜRSICH, Xiumian HU, Stephen KERSHAW, Benzhong XIAN

Members: Mariano ARCURI, Leonardo BENEDINI, Lorena BONJOUR, Pablo DIAZ, Juan DI NARDO, Ainara IRASTORZA, Marcelo MARTINEZ, Daniela OLIVERA, Natalia SANCHEZ, Antonela TORRESI, Valentin TROBBIANI, Martin TURIENZO, Laura VECCHI, Agustin ZORZANO

Secretary General: Daniela OLIVERA, Yinhe WU

Secretariat Office: Amira CHALABE, Zhiyuan GE, Lin HU, Xiufang HU, Veronica ITURAIN, Shuyan LI, Min LIU, Lorena MUSOTTO, Junhui WANG, Haizhou WANG, Shaohua WANG, Zhenhua XU, Xiujuan ZHENG

Carlos Zavala

Shenghe Wu

7th INTERNATIONAL CONFERENCE OF PALAEOGEOGRAPHY

October 16-19, 2026 - Mendoza, Argentina

Palaeogeography in the digital & AI age

Venue

Venue: Sheraton Mendoza Hotel, Primitivo de la Reta 989, M5500 Mendoza, Argentina.

Located in the downtown of Mendoza, the Sheraton Mendoza Hotel, together with the Hualta and Huentalá hotels share a common space, with 356 rooms and a number of meeting rooms.

Visiting Mendoza constitutes a wonderful experience for enjoying excellent geological exposures, food and wine. A selected options of complementary activities for attendees and accompanying members will be provided, focused in allowing a wonderful geological and touristic experience in Argentina.

Schedule

2026. Oct. 9-15

Pre-conference field excursions: (1) A field trip through the Proto-Andean sedimentary record and proxies for the reconstruction of western Gondwana basins through time (seven days); (2) Andean structural styles: Chos Malal fold-thrust belt, Neuquén Basin (three days)

2026. Oct. 16

Short Course 1: Describing and Understanding Shale/- Mudstone Facies.
Short Course 2: Sedimentology of Shelf Deltas: Key Palaeogeographical Elements.
Short Course 3: Trace Fossils in Palaeoenvironmental Reconstructions.
Registration. Ice breaker

2026. Oct. 17

Opening Ceremony, plenary talks, oral presentations, poster presentations

2026. Oct. 18

Intra-conference field excursions and intra-conference activities: (1) Field trip to the highest Andes; (2) The Carnian Pluvial Episode in the Triassic Cuyo Basin; (3) Cambrian peritidal cyclic carbonates in epeiric seas: their main features, completeness and proxies to interpret epeiric seas; (4) City tour and Mendoza vineyards

2026. Oct. 19

Plenary talks, oral presentations, poster presentations. Closing Ceremony,

2026. Oct. 20-24

Post-conference field excursions: (1) Facies, depositional environments and reservoirs: an outcrop perspective. The Neuquén Basin as a case study (five days) (3) The Aconcagua transect (four days)

Technical Themes & sessions

Themes	Sessions
T1: Palaeogeography and major evolutionary events of life	T1-1: Palaeobiogeography and major biotic transitions T1-2: Fossil data and their application to palaeoenvironments and palaeogeography T1-3: Integrating multiple datasets in ichnologic analysis T1-4: Palaeobiogeography and major evolutionary events of life
T2: Lithofacies palaeogeography and sedimentology	T2-1: Aeolian depositional systems and desert basins T2-2: Fluvial and deltaic sedimentology T2-3: Depositional processes in coastal to shelfal environments T2-4: Sediment gravity flows and deep-water sedimentology T2-5: Mud depositional processes and linkages to basin-fill architecture T2-6: Fine-grained sedimentology: synergistic coevolution of Environment-Biota-Minerals T2-7: Carbonate sedimentation: from facies analysis to global changes T2-8: Non-marine carbonate sedimentology T2-9: Volcanic activity: environmental impact and resource significance
T3: Tectonic palaeogeography and global palaeogeographic reconstruction	T3-1: Global palaeogeographic reconstruction T3-2: Tectonic palaeogeography and sedimentation T3-3: Tectonosedimentology T3-4: Pre-Andean and Andean tectonics
T4: Resource palaeogeography (hydrocarbon and mineral deposits)	T4-1: Petroleum geology of deep-water depositional systems T4-2: Deep and ultra-deep reservoir and hydrocarbon accumulation T4-3: Unconventional reservoirs and hydrocarbon exploration T4-4: Siliciclastic reservoir geology and hydrocarbon exploration T4-5: Reservoir heterogeneity and hydrocarbon development T4-6: Depositional architecture and reservoir geology T4-7: Organic matter enrichment and petroleum accumulation in continental saline lacustrine basins T4-8: Carbonate-evaporite paragenesis system: palaeogeographic reconstruction and resource implications T4-9: Dolomitization and dolomite reservoirs T4-10: Coal-bearing successions and related mineral deposits T4-11: Lacustrine sedimentology applied to hydrocarbon exploration and development T4-12: Sedimentary metal ore deposits and palaeogeography T4-13: Basin volcanic activities and their potential for hydrocarbon accumulation T4-14: Palaeogeographic controls on sweet spot development in unconventional hydrocarbon reservoirs T4-15: Characteristics of shale oil reservoirs, exploration and development technology and paleogeographic control T4-16: Application of paleogeography and research on growth potential of oil and gas reserves
T5: Stratigraphy and basin analysis	T5-1: Marine sequence stratigraphy and basin analysis T5-2: Non-marine sequence stratigraphy and basin analysis T5-3: Palaeogeography in the period of human history T5-4: Precambrian sequence stratigraphy and basin evolution T5-5: Basin analysis in different tectonic settings T5-6: Shelf sedimentology and stratigraphy
T6: Global changes, paleoclimate, and sedimentary events	T6-1: Climate, ecology and geomorphology in Quaternary palaeogeography T6-2: Records of event deposits: processes, mechanisms and implications T6-3: Authigenic minerals and global changes: micro-archives of the big picture T6-4: Rapid climate changes and environmental crises during the Mesozoic-Cenozoic hyperthermals T6-5: Palaeogeography, palaeoclimate, and palaeoceanography of the Late Paleozoic/Ice Age T6-6: Carbon, nitrogen and sulfur cycles and Earth systems evolution T6-7: Asian Cenozoic sedimentation and climate evolution
T7: Technologies and big data for palaeogeographic reconstruction	T7-1: Multi-scale digital geology and sedimentary simulation T7-2: Seismic sedimentology and its application in palaeogeographic reconstruction T7-3: Well-logging sedimentology and palaeoenvironment T7-4: Geochemical research and its application in palaeoenvironment and resource exploration T7-5: Palaeoclimate and palaeoceanographic research using isotopic approaches T7-6: Data and modeling of deep-time geography T7-7: Astronomical forcing of palaeoclimate and palaeoenvironmental systems T7-8: Reconstructing Earth's surface evolution from numerical modeling T7-9: Palaeogeographic reconstruction based on big data and AI

Please visit <https://www.isp2022.org/en/conferences/> to upload your abstract!

An abstract volume (including oral and poster presentations) will be released at the conference.

The deadline for submission of abstracts is **May 30, 2026**.

Abstract format: Each abstract should not exceed one page of A4 paper, including one figure/table as maximum. The content of the abstract includes the title, author's name, author's institution, corresponding author's E-mail, body of the abstract, and keywords. Abstracts should be written in document format (.doc or .docx). The abstract format template and submission pattern are provided on the conference website <https://www.isp2022.org/en/conferences/>.

The conference language will be English. The conference will invite a number of renowned scientists to make plenary presentations, and set up a number of thematic sessions.

The presentation types and their corresponding times are shown as follows (multimedia ratio type 16:9):

1. Plenary talk: 40 minutes, including 35 minutes for talk and 5 minutes for questions and discussions;

2. Keynote talk: 20 minutes, including 15 minutes for talk and 5 minutes for questions and discussions;

3. General oral presentation: 15 minutes, including 12 minutes for oral presentation (participants may prepare their talks as recorded video and play the video at the conference, with a resolution of not less than 1920x1080) and 3 minutes for on-site questions and discussions;

4. Poster: the size of the poster is 90 cm x 120 cm (width x height), which needs to be posted in advance in the designated area by the authors themselves.

Please visit <https://www.isp2022.org/en/conferences/> to upload your abstract!

Short Courses

Dr. Juergen Schieber,
Indiana University, USA

Short Course 1: Describing and Understanding Shale/Mudstone Facies

An introduction to the heterogeneous nature of shales and mudstones and guidance on how to work effectively with these complex lithologies. Expose the participants to a descriptive and interpretative methodology that benefits from 40 years of experience researching these rocks. The course is a combination of lectures that explain fundamental concepts. Theory and practice are brought together for a deeper learning experience. Lectures and discussion breaks alternate to allow time for reflection, and to illustrate lecture introduced concepts with additional examples.

Short Course 2: Sedimentology of Shelf Deltas: Key Palaeogeographical Elements

River-dominated deltas, mouth bars and fluvial sediment dispersal into the basin. River discharge interacting with basinal waves, tides and fluid muds produces a compound (double clinoform) delta architecture. River deltas dispersing sediment onto wave-dominated shelves. What is the architecture (eg Rhône delta and ancient analogs). River deltas on shelves significantly affected by tides. What is the architecture? (e.g. Colorado and Han deltas, and ancient analogs). Shelf-edge deltas, how common are they?

Prof. Ron Steel,
Emeritus Professor,
University of Texas at Austin, USA

Short Course 3: Trace Fossils in Palaeoenvironmental Reconstructions

The recognition that trace-fossil distribution is strongly controlled by environmental factors has led to the success of ichnology as a valuable tool in facies analysis. Intense research during the last decades has resulted in more sophisticated trace-fossil models for

different environments. However, not all have been analyzed to the same extent. In this course, we will review the basic concepts of ichnology, the role of environmental factors on trace fossil distribution, and the strengths and weakness of current models. In addition, we will explore perspectives for future developments that may result in the construction of trace-fossil models for less understood depositional environments.

Profs. Luis Buatois & Gabriela Mangano
University of Saskatchewan, Canada

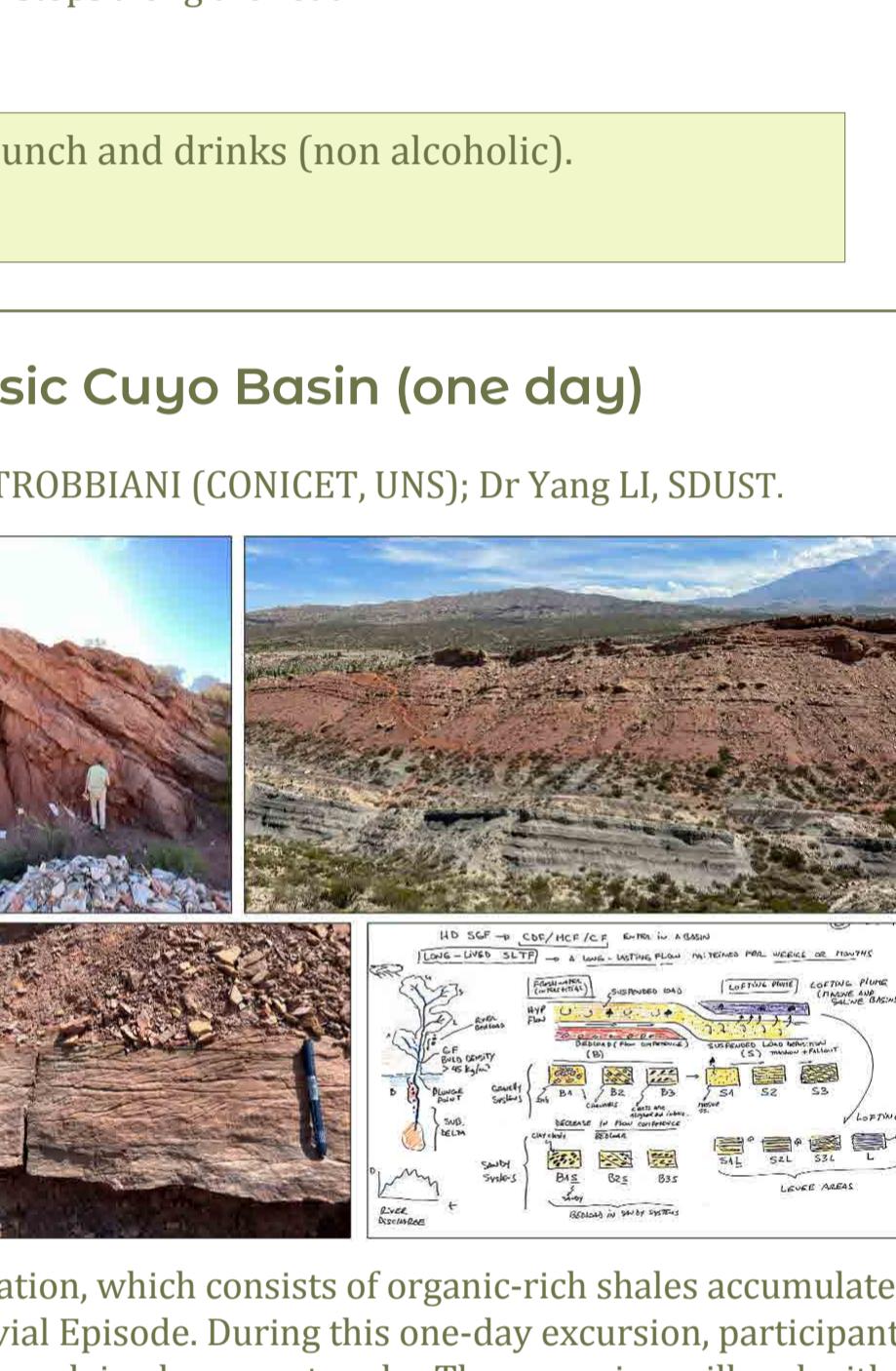
Field Excursions

Places are limited. Please book your place as soon as possible!

PRE-CONFERENCE

(1) A Field trip through the Proto-Andean sedimentary record and proxies for the reconstruction of western Gondwana basins through time (seven days)

Instructors: Ricardo ASTINI and Susana DE LA PUENTE. Professors at National Universities of Argentina and Researchers of the National Council on Science and Technology (CONICET)

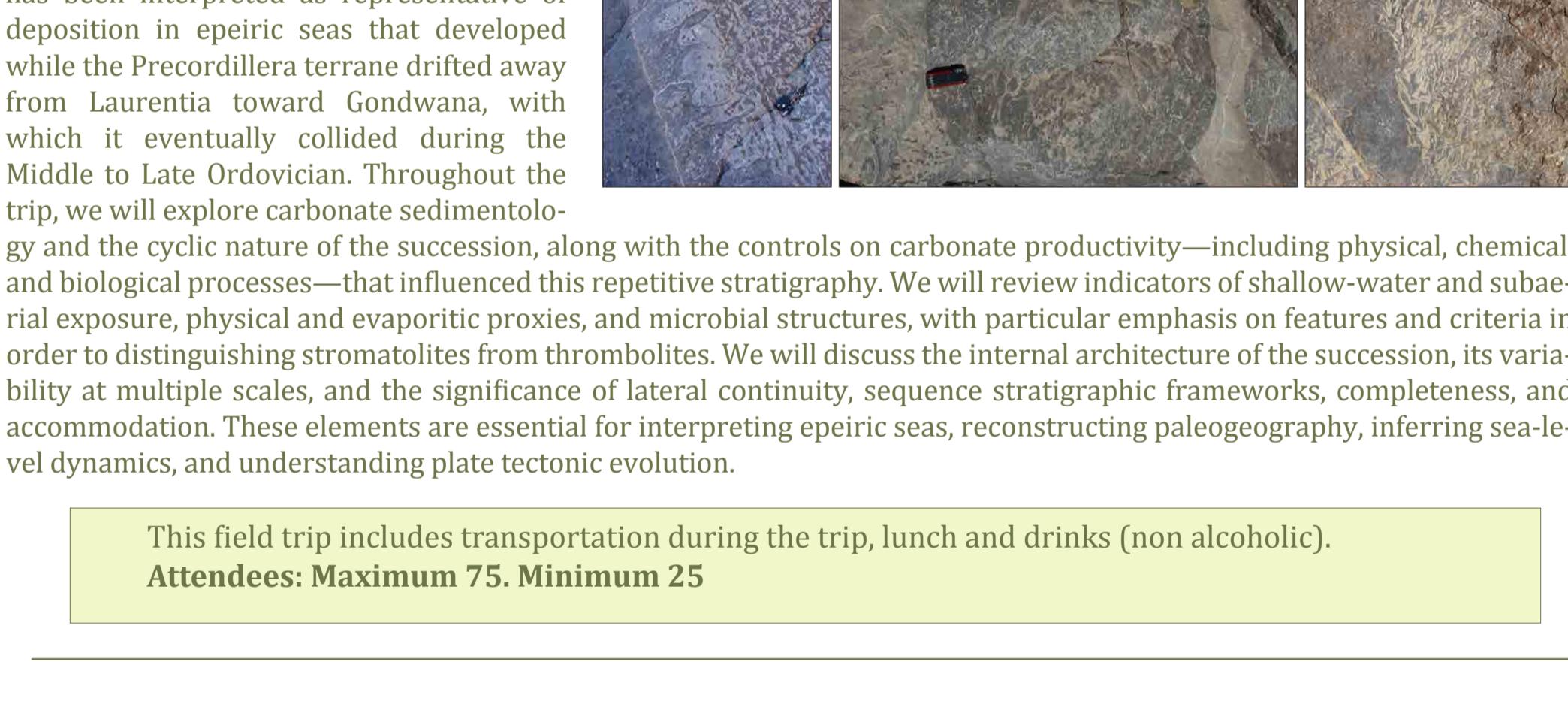

Summary: This seven days compact and demanding field trip offers a comprehensive introduction to the stratigraphic framework and main geological features of the western margin of Gondwana. Through the use of multiple proxies, we will explore the evolutionary history and key paleogeographic reconstructions that shaped this region. Our journey will traverse various cordilleran regions along the Andes, where we will make detailed observations and examine multiple lines of evidence that contribute to our current understanding of the complex tectonic evolution of the Proto-Andean margin. From north to south, we will visit stratigraphic sections near the Argentina-Bolivia border, spanning the Subandes Ranges, the Cordillera Oriental and the Puna Plateau, as well as the stunning geological transects of the Famatina and Precordillera regions, to the south. By doing so, we will be able to explore both the geology of the autochthonous crust and that of the exotic Laurentian-derived accreted terrane that helped shape the Proto-Andean margin of Gondwana. A particular focus will be placed on the glacial events that impacted this region and their connection to the geodynamics of the Terra Australis Orogen. Participants will gain insight into the sedimentary processes, depositional environments, and sequence stratigraphy that characterize these regions, and will also understand how this knowledge has been used to reconstruct the complex paleogeography of this truly unique case on Earth. We will also examine variations in accommodation space and basin types, discussing their tectonic and climatic controls. In addition to geological and stratigraphic exploration, we will engage in discussions on regional tectonics, geomorphology, and landscape evolution. The field trip will also offer excellent opportunities to enjoy breathtaking scenery, savor traditional regional cuisine, and taste some of the finest local wines—an unforgettable blend of science and culture in one of South America's most spectacular settings.

This field trip includes accommodation, transportation during the trip and all meals and drinks (non alcoholic). **Attendees: Maximum 20. Minimum 10**

(2) Andean structural styles: Chos Malal fold-thrust belt, Neuquén Basin (three days)

Instructors: Dr. Martín TURIENZO, Researcher-Professor of Structural Geology, UNS-CONICET, Bahía Blanca

Summary: The Chos Malal FTB (~37°S), offers the opportunity to explore the complete stratigraphy of the Neuquén Basin and observe and discuss the different structural styles created during the Andean contraction. The excellent outcrops allow for field studies of the geometry of both the large first-order structures involving the Paleozoic basement and the thin-skinned structures of different orders developed in the Mesozoic sedimentary sequences. Across this fold belt, we will be able to discuss the interaction between these structures of different order, the influence of inherited extensional structures, the spatial-temporal evolution of this orogenic system based on recent low-temperature thermochronological data (ZHe, AFT, AHe), and the influence of tectonics on the petroleum systems of adjacent sectors of the Neuquén Basin.


This field trip includes accommodation, transportation during the trip and all meals and drinks (non alcoholic). **Attendees: Maximum 20. Minimum 10**

INTRA-CONFERENCE

(1) Field trip to the highest Andes (one day)

Instructor: Dr. Victor RAMOS, Universidad de Buenos Aires

Summary: The present intra-conference field trip provides the opportunity to examine the tectonic evolution of the Central Andes, in one of the most classic sections. It aims to show the key localities where field data have been obtained and the different regional relationships and tectonic models have been based. Despite its short duration, it will provide a comprehensive view of the geology of the Central Andes. The main objective of the trip is to examine one of the most complete traverses of the Andes, where a noncollisional orogenic belt reaches elevations near 7 km (Mount Aconcagua the highest mountain of the Western Hemisphere). These mountains are in an area of no present volcanic activity, and therefore, the Late Cenozoic shortening is directly related to the present uplift and convergence rates. The route as chosen will show the different structural styles of the Argentine Precordillera, the Cordilleras Frontal and Principal as indicated in the field trip road map, with some classic stops along the road.

Mount Aconcagua

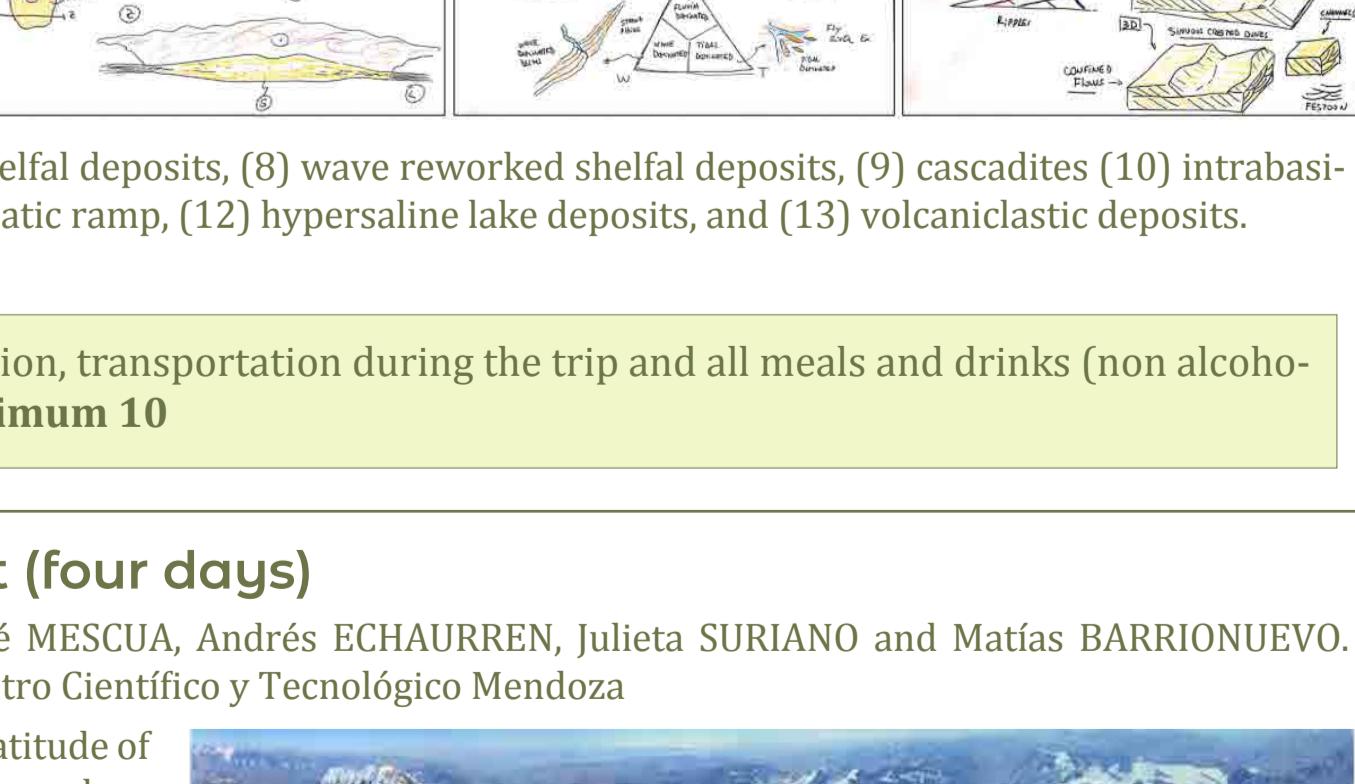
This field trip includes transportation during the trip, lunch and drinks (non alcoholic).

Attendees: Maximum 75. Minimum 25

(2) The Carnian Pluvial Episode in the Triassic Cuyo Basin (one day)

Instructors: Dr. Carlos ZAVALA, SDUST, Qingdao, China; Valentin TROBBIANI (CONICET, UNS); Dr Yang LI, SDUST.

Summary: The Cuyo Basin constitutes one of the main depocenters configured during the Triassic in west-central Argentina. The stratigraphic succession includes deposits of continental origin with a thickness of more than 3,000 m, accumulated in different fluvio-lacustrine environments. The infill of the Cuyo Basin occurs along several transgressive-regressive cycles associated with the evolution from an underfilled to an overfilled lake. Of particular interest is the Cacheuta Formation, which consists of organic-rich shales accumulated during a general lake transgression associated with the Carnian Pluvial Episode. During this one-day excursion, participants will have the opportunity to review the entire stratigraphic column overlying basement rocks. The excursion will end with a typical "asado" in the Potrerillos town.

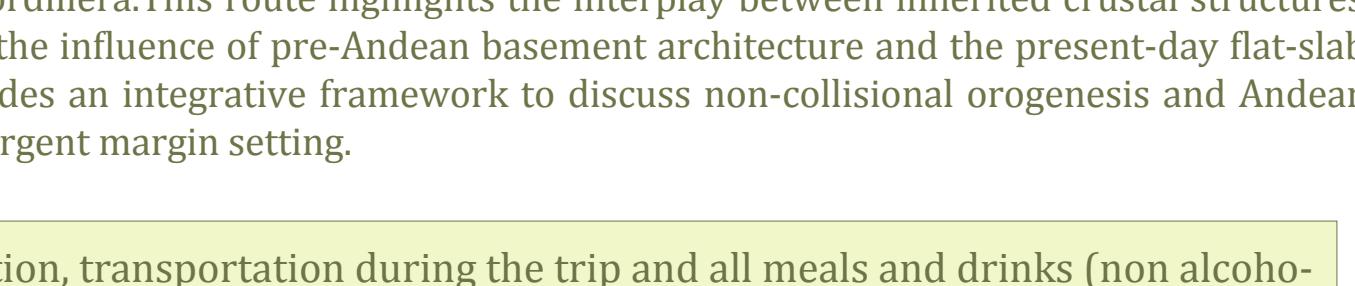

This field trip includes transportation during the trip, lunch and drinks (non alcoholic).

Attendees: Maximum 75. Minimum 25

(3) Cambrian peritidal cyclic carbonates in epeiric seas: their main features, completeness and proxies to interpret epeiric seas (one day)

Instructors: Ricardo ASTINI and Fernando GOMEZ. Professors at the National University of Córdoba in Argentina and Researchers of CONICET

Summary: Peritidal cyclic carbonates are valuable paleogeographic indicators, as they preserve detailed records of highly specific ancient environments and serve as proxies for carbonate productivity, sea-level fluctuations, and associated tectonic settings. This one-day intracongress field trip will take us to a stunning gorge in the Argentine Precordillera (~100 kilometers from the convention center in the city of Mendoza), where several thousand meters of carbonate strata are spectacularly exposed. This exceptional sedimentary record, of Late Cambrian age, has been interpreted as representative of deposition in epeiric seas that developed while the Precordillera terrane drifted away from Laurentia toward Gondwana, with which it eventually collided during the Middle to Late Ordovician. Throughout the trip, we will explore carbonate sedimentology and the cyclic nature of the succession, along with the controls on carbonate productivity—including physical, chemical and biological processes—that influenced this repetitive stratigraphy. We will review indicators of shallow-water and subaerial exposure, physical and evaporitic proxies, and microbial structures, with particular emphasis on features and criteria in order to distinguish stromatolites from thrombolites. We will discuss the internal architecture of the succession, its variability at multiple scales, and the significance of lateral continuity, sequence stratigraphic paleogeography, inferring sea-level dynamics, and understanding plate tectonic evolution.



This field trip includes transportation during the trip, lunch and drinks (non alcoholic).

Attendees: Maximum 75. Minimum 25

(4) City tour and Mendoza vineyards (one day)

Summary: This city tour and vineyard visit was designed for accompanying persons. During this trip the attendees will visit the most iconic places of the Mendoza city. Additionally, we will have the opportunity of visiting one of the most internationally famous vineyards of Mendoza.

This field trip includes transportation during the city tour, lunch at a winery and wine tasting.

Attendees: Maximum 75. Minimum 25

POST-CONFERENCE

(1) Facies, depositional environments and reservoirs: an outcrop perspective. The Neuquén Basin as a case study (five days)

Instructor: Dr. Carlos ZAVALA, SDUST, Qingdao, China

Summary: Because of bearing excellent examples of deposits accumulated in a number of depositional environments. These deposits and their body rocks can be used as analogs for characterizing hydrocarbon reservoirs during the field training, the attendees will review its more than 7,000 m thick stratigraphic column. Excellent exposures will be complemented with drawings by Prof. Zavalá, making this training an outstanding experience. During our trip we are going to review a number of depositional environments and their alluvial facies, (2) fluvial systems, (3) lacustrine systems, (4) aeolian systems, (5) littoral deltas, (6) subaqueous hyperpycnal deltas, (7) tidal reworked shelfal deposits, (8) wave reworked shelfal deposits, (9) cascadites (10) intrabasinal and extrabasinal turbidites, (11) carbonatic ramp, (12) hypersaline lake deposits and (13) volcanoclastic deposits.

This field trip includes accommodation, transportation during the trip and all meals and drinks (non alcoholic).

Attendees: Maximum 20. Minimum 10

(2) The Aconcagua transect (four days)

Instructors: Dra. Laura GIAMBAGLI, José MESCÚA, Andrés ECHAURREN, Julieta SURIANO and Matías BARRIONUEVO. Researchers at the IANIGLA - CONICET. José MESCÚA, Andrés ECHAURREN, Julieta SURIANO and Matías BARRIONUEVO.

Summary: This four-day transect at the latitude of Aconcagua offers a unique opportunity to explore the tectonic architecture and evolution of the Andes along one of its most iconic and geologically informative sections. The field trip traverses the southern Central Andes, where the highest peak in South America—Mt. Aconcagua (6,967 m a.s.l.)—rises as a striking witness to complex orogenic processes. Participants will examine the tectonic evolution from the Mesozoic to the Quaternary, focusing on key exposures that record the transition from the southward margin of Gondwana to the development of the Andean orogenic system. The transect spans a complete cross-section of the orogen, including the Andean foothills, Precordillera, Frontal Cordillera, Principal Cordillera, and Coastal Cordillera. This route highlights the interplay between inherited crustal structures and ongoing tectonic processes, including the influence of pre-Andean basement architecture and the present-day flat-slab subduction. The Aconcagua transect provides an integrative framework to discuss non-collisional orogenesis and Andean geodynamics in a globally significant convergent margin setting.

This field trip includes accommodation, transportation during the trip and all meals and drinks (non alcoholic).

Attendees: Maximum 20. Minimum 10

Conference Fee

Type of Registration Fee		ISP Member		Non-ISP Member*		
		Attendee	Student	Attendee	Student	Accompanying Person
CNY	Before July 1, 2026 (Early bird)	2,500	1,500	3,500	2,000	1,200
	After July 1, 2026	3,000	1,800	4,000	2,400	1,500
	After September 30, 2026 or Onsite	4,000	2,400	4,500	3,000	2,000
USD (USD)**	Before July 1, 2026 (Early bird)	350 (290)	210 (150)	500 (440)	285 (225)	170 (110)
	After July 1, 2026	430 (370)	260 (200)	575 (515)	345 (285)	215 (155)
	After September 30, 2026 or Onsite	575 (515)	345 (285)	640 (580)	430 (370)	290 (230)

Attendees from Argentina can pay the conference fee in local currency (AR\$) at the USD official rate of Banco de la Nacion Argentina.

* Non-ISP members are welcome to join the ISP (<https://www.isp2022.org/dy/join/>), and complete this registration as an ISP member.

** The full registration includes the icebreaker reception (16-9), two buffet lunches (17-9 & 19/9) and coffee breaks.

A reduced-fee option (in brackets) is available, including only coffee breaks.

Short courses & field trip Fees

SHORT COURSE / FIELD TRIP FEE	DAYS	Attendees		ISP Member	Non-ISP Member*
		min.	max.		
Short Course 1: Describing and Understanding Shale/Mudstone Facies	1	20	80	USD 80	USD 110
Short Course 2: Sedimentology of Shelf Deltas: Key Palaeogeographical Elements	1	20	80	USD 80	USD 110
Short Course 3: Trace Fossils in Palaeoenvironmental Reconstructions	1	20	80	USD 80	USD 110
Pre-Conference Field Trip 1: The Proto-Andean sedimentary record and proxies for the reconstruction of western Gondwana basins through time	7	10	20	USD 1,750	USD 2,450
Pre-Conference Field Trip 2: Andean structural styles: Chos Malal fold-thrust belt, Neuquén Basin	3	10	20	USD 950	USD 1,330
Intra-Conference Field Trip 1: The highest Andes	1	25	75	USD 90	USD 126
Intra-Conference Field Trip 2: The Carnian Pluvial Episode in the Triassic Cuyo Basin	1	25	75	USD 90	USD 126
Intra-Conference Field Trip 3: Cambrian peritidal cyclic carbonates in epeiric seas: their main features, completeness and proxies to interpret epeiric seas	1	25	75	USD 90	USD 126
City tour and Mendoza vineyards	1	25	75	USD 70	USD 100
Post-Conference Field Trip 1: Facies, depositional environments and reservoirs: an outcrop perspective. The Neuquén Basin as a case study	5	10	20	USD 1,350	USD 1,890
Post-Conference Field Trip 2: The Aconcagua transect	4	10	20	USD 1,150	USD 1,610

* Non-ISP members are welcome to join the ISP (<https://www.isp2022.org/dy/join/>), and complete this registration as an ISP member.

Important dates

February 01, 2026 Release of the Second Circular. Opening for abstract submission. Opening for early bird registration

May 30, 2026 Deadline for abstract submission.

July 01, 2026 Deadline for early bird registration

July 30, 2026 Deadline for Field Trip registration

September 20, 2026 Release of the Third Circular and Conference Program

September 30, 2026 Deadline for normal registration. Starting on site registration fee

October 17, 2026 Opening of the 7th International Conference of Palaeogeography

Contact information

Please send e-mail to Secretariat Office (ISP-secretariat@cup.edu.cn) for general issues, while for specific issues you may contact the following personals:

Yuan WANG: +861062396149, +8613522568882, jop_yuan@163.com

Carlos ZAVALA: +542916453476, +8617685809103, icp.argentina2026@gmail.com; 7thicp@gmail.com

Address: Editorial office of Journal of Paleogeography, China University of Petroleum (Beijing), No. 20 Xueyuan Road, Haidian, Beijing 100083, China